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Abstract
A new infinite family of examples of finite non-bicolourable configurations of
rays in Hilbert space is described. Such configurations appear in the analysis
of quantum mechanics in terms of Bell’s inequalities and the Kochen–Specker
theorem and illustrate that there is no measurable space in the background of the
probability model of a quantum system. The mentioned examples are naturally
parametrized by a positive integer divisible by 4 and by several complex-valued
parameters, whose number depends on this integer. In order to compare two
configurations with the same number of rays, a notion of deformation of a
configuration is introduced. The constructed examples are then interpreted as
obtained by way of deformations.

PACS numbers: 03.65.Ta, 03.65.Fd, 03.65.Ud

1. Introduction

The non-bicolourable finite configurations of rays play a substantial role in quantum
mechanics. Generally speaking, they are meant to illustrate various weird features of
quantum theory—the so-called contextuality, non-locality, indeterminism, etc (depending on
the metaphysical point of view accepted by a particular scientist). This makes them especially
interesting, and in fact fundamental, for the quantum computing technology.

The terminology used in the present paper is close to that introduced in [1]. Let H be a
Hilbert space over C of finite dimension d. Consider the set of all projective lines P(H), and
let A be a subset of it. The elements of A are termed as rays. Let � be a finite set consisting of
two formal symbols termed as colours, say � := {red, blue}. Denote by ⊥ the orthogonality
relation on A induced by the inner product on H. A function v : A → � is called a bicolouring
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if the following two conditions are met: (1) for every l, l′ ∈ A, if v(l′) and v(l) are both red,
then l �⊥ l′; (2) in every collection l1, l2, . . . , ld ∈ A of d pairwise orthogonal rays, there is
an element lr such that v(lr ) = red. The set A is called bicolourable in case it admits a
bicolouring, and non-bicolourable otherwise.

Intuitively, given a collection of rays A, it is natural to imagine the possibility of performing
a ‘homotopy process’ over it. For example, if A is non-bicolourable, is it possible to vary the
positions of rays in such a way that it remains non-bicolourable? Is it possible to transform
a bicolourable configuration into a non-bicolourable one? So, it is better to view the non-
bicolourability as a property of the configuration.

The physical meaning of non-bicolourability can be illustrated as follows. Interpret H as
the Hilbert space associated with some quantum-mechanical system. Hence, for every l ∈ A,
the corresponding orthogonal projector π̂l represents in H an observable that may acquire just
two values, 0 and 1. Call this observable Pl , and denote OA := {Pl}l∈A. It may seem natural
from the positions of classical physics to think that it is possible to construct a non-empty set �
and a map ρ : OA → P(�), such that ρ(l′) and ρ(l) are disjoint whenever l ⊥ l′, and for every
collection l1, l2, . . . , ld of pairwise orthogonal rays, the sets ρ(li), i = 1, 2, . . . , d , partition �.
But in this case, one can associate with every point ω ∈ � a bicolouring vω of A : vω(l) := red,
if ρ(l) � ω, and vω(l) := blue, otherwise. Hence, for a non-bicolourable A such a map ρ

cannot exist. Therefore, the behaviour of the system with respect to the observables Pl, l ∈ A,
will always look non-classical. For a detailed discussion of the physical meaning of such
constructions, one may refer to [2–10]. The general motivation can be found in [11, 12].

It is interesting to mention the link between the notion of non-bicolourability and the
discussion about indeterminism in quantum physics. If one speaks about ‘determinism’, one
operates with the notions of cause and effect. Whatever happens always has a reason, why
it happens. A naive conception of determinism is based on a set-theoretic understanding of
‘causes’ and ‘effects’. In other words, they are mathematically nothing more but points of
some sets. Invoking the above notation, one is tempted to view the points ω ∈ � as causes in
the following sense. For every single measurement act, just one of the points ω ∈ � becomes
active; if ρ(l) � ω, then the result of the measurement of Pl is destined to be 1; otherwise it
should be 0. Since for a non-bicolourable A such a space � does not exist at all, the naively
deterministic point of view on the system with respect to observables OA must be ruled out.

A more careful investigation of the physical meaning behind the non-bicolourable
configurations should take into account the fact that the collection of all observables
corresponding to the orthogonal projections onto one-dimensional subspaces is not just a
set, but a topological space (the topology stems from the inner product on H). It is known
due to [13] that finite non-bicolourable configurations in H exist whenever its dimension d
satisfies d � 3. At the same time, according to [5–7], every such space admits a (countable)
bicolourable configuration, which is dense if viewed in the mentioned topology. This implies
that if we accept a thesis that no experimental setup can achieve an ideal realization of
measurements (i.e. one only tries to measure a target observable, but the resulting observable
being actually measured is not precisely known), then one may question the falsifiability of the
existence of ‘non-contextual hidden variables’ in (non-relativistic) quantum mechanics. This
has been a subject of some non-trivial discussions in recent papers (see [8–10] and references
therein).

It is not difficult to give an example of a non-bicolourable configuration. If the dimension
d of the space H satisfies d � 3, then the whole set P(H) is non-bicolourable. This is
a straightforward corollary of a classical result in functional analysis—Gleason’s theorem.
More important is that there exist finite non-bicolourable configurations. Kochen and Specker
have found [13] the first example of such a configuration for d = 3. Their construction is
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quite sophisticated and involves 117 rays. Since then several other examples in spaces of
other dimensions have been found [1, 14–19]. It is necessary to note that they all exhibit some
degree of symmetry, and by that the non-bicolourability may be viewed as stemming from the
properties of the corresponding group. Despite this fact, a complete classification of all finite
non-bicolourable configurations is not known and so far each time an element of creativity
is required to find a new example. The aim of the present paper is to describe a new infinite
family (or, more precisely, family of families) of such configurations and to investigate the
possibility of their deformations.

2. Non-orthogonality and deformations

Let A be a finite collection of rays in a complex Hilbert space H of finite dimension d. In order
to verify whether A is bicolourable or not, it suffices to know just the orthogonality relation
between its elements, or, what is equivalent, but conceptually better, the non-orthogonality
relation �⊥. The formulae defining the rays themselves become at this stage unessential. Let
us start with the description of this relation for the family of the upcoming examples.

We need some auxiliary notation first. Let V be a finite set, #V = N . It will be
necessary to assume later that the number 4 divides N,N = 4n, n ∈ N, but at this moment
it is not important. Now, let p0, p1, p2, p3 ∈ Z/2 be four parameters. Look at all functions
ϕ : V → Z/2 and for every U ⊂ V denote

L(U) :=
{

ϕ : V → Z/2

∣∣∣∣∑
v∈U

ϕ(v) = p#4U

}
, (1)

where #4U ∈ Z/4 is the cardinality of U modulo 4. Consider the disjoint union of the sets
L(U). Denote it as X := ⊔U∈P(V ) L(U), and let iU : L(U) � X,U ∈ P(V ), be the
canonical injections. Define a relation R on X as follows. Take any x, x1 ∈ X of the form
x = iU (ϕ) and x1 = iU1(ϕ1). If U1 = U , then put (x, x1) ∈ R :⇔ ϕ1 = ϕ; if U1 �= U , then
put

(x, x1) ∈ R :⇔
∑

v∈U�U1

ϕ(v) =
∑

v∈U�U1

ϕ1(v) + p#4(U�U1), (2)

where � denotes the symmetric difference between the two subsets.
Observe that if U ⊂ V is not empty, then #L(U) = 2N−1. Let the dimension d of space

H coincide with this number, d = 2N−1. Suppose that A can be viewed as a union of N + 1
pairwise disjoint subsets of same cardinality d : N sets denoted as Av, v ∈ V , and a set Â, i.e.
A = (∪v∈V Av) ∪ Â. Let the elements of Av be indexed by L({v}), and the elements of Â by
L(V ). Write Av = {�v

σ

}
σ∈L({v}), Â = {Fπ }π∈L(V ). Hence, the set A becomes indexed by a

subset X0 ⊂ X, which is a disjoint union of all L({v}), v ∈ V , and L(V ). Take any R′ ⊂ R

such that ∀U ∈ P(V )∀ϕ ∈ L(U) : (iU (ϕ), iU (ϕ)) ∈ R′. By this one ensures that ∀U and
∀ϕ, ϕ′, there is an equivalence (iU (ϕ), iU (ϕ′)) ∈ R′ ⇔ ϕ = ϕ′. At the same time, unlike the
case with R, for (iU (ϕ), iU1(ϕ1)) ∈ R′, U1 �= U , only an implication ‘⇒’ of the form as above
in (2) is valid. The relation R′ on X induces a relation on X0, which we denote as R′

0.
Now, suppose that the non-orthogonality relation between the rays that constitute A stems

precisely from R′
0. In other words, �v

σ �⊥ �v1
σ1

iff (i{v}(σ ), i{v1}(σ1)) ∈ R′
0, and �v

σ �⊥ Fπ iff
(i{v}(σ ), iV (π)) ∈ R′

0, where v, v1 ∈ V, σ ∈ L({v}), σ1 ∈ L({v1}), π ∈ L(V ). In particular,
this implies that the elements of each Av, v ∈ V , as well as the elements of Â are pairwise
orthogonal.

The requirement that A is bicolourable yields a condition on the parameters p0, p1, p2, p3.
Choose and fix a bicolouring, assuming that it exists. In particular, each of the subsets
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Av, v ∈ V , has precisely one red ray, and the subset Â has precisely one red ray. Denote the
red rays as �v

σv
, v ∈ V , and Fπ̂ . Since any two red rays cannot be orthogonal, taking into

account the explicit description (2) of R, one obtains∑
z=v,v1

(σv(z) + σv1(z)) = p2,
∑

z∈V \{v}
(σv(z) + π̂(z)) = p3.

Invoking definitions (1) of L(U),U ⊂ V , one derives

σv(v1) + σv1(v) = p2,
∑

z∈V \{v}
σv(z) = π̂(v) + p0 + p3.

Take a sum over all pairs {v, v1} in the first formula. Similarly, take a sum over all v in the
second formula. This yields∑

v,v1∈V,
v1 �=v

σv(v1) = N(N − 1)

2
p2,

∑
v,z∈V,
z �=v

σv(z) =
∑
v∈V

π̂(v) + N(p0 + p3).

Since π̂ ∈ L(V ), we have
∑

v∈V π̂(v) = p0. Subtracting the first equality from the second
one, we obtain

(N + 1)p0 +
N(N − 1)

2
p2 + Np3 = 0.

Finally, since N = 4n, n ∈ N, this simply reduces to p0 = 0. Therefore, it is sufficient just to
have p0 = 1 in order to claim that the configuration A is non-bicolourable.

It is natural to consider the following problem. Suppose the set A with the described
relations between the rays exists. Is it possible to vary its configuration without breaking up
these relations? Consider a simple analogy. Take two orthonormal bases {ei}3

i=0 and {fj }3
j=0

in C
4, and suppose that Cfj �⊥ Cei iff i + j is even. The space C

4 splits into orthogonal sum
H0 ⊕ H1, with H0 := span{e0, e2} = span{f0, f2} and H1 := span{e1, e3} = span{f1, f3}.
One may rotate infinitesimally the pair {f0, f2} in such a way that both of its elements are
kept in H0. At the same time, one may keep the other six vectors fixed, and this will not
break up the mentioned description of the non-orthogonality relation. This motivates the
following definition. Let A and A′ be two configurations of rays in H, dimH = d. A
bijective map δ : A

∼→ A′ is called a deformation of A, if it satisfies the following condition:
for all l, l′ ∈ A, δ(l′) �⊥ δ(l) iff l �⊥ l′. In the following sections we will construct for
every N = 4n, n ∈ N, a non-bicolourable configuration with the non-orthogonality relation
stemming from R′

0 as described above, and then prove explicitly that they admit non-trivial
deformations. By that a new family of families of non-bicolourable configurations is obtained.

3. Rays and equations

Recall that N = #V = 4n, n ∈ N. Assign the values to the parameters: p0 = 1, p1 = p2 =
p3 = 0. We need to construct the rays �v

σ , v ∈ V, σ ∈ L({v}), and Fπ, π ∈ L(V ), such that
the following implications are valid:

�v
σ �⊥ �v1

σ1
⇒ σ(v1) + σ1(v) = 0,

�v
σ �⊥ Fπ ⇒

∑
z∈V \{v}

(π(z) + σ(z)) = 0.

Put H := C
2 ⊗ C

2 ⊗ . . . ⊗ C
2 (N − 1 times). Let us search the �-rays in the form

Cf1 ⊗ f2 ⊗ . . . ⊗ fN−1, i.e. each of these rays is a one-dimensional subspace spanned
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over a homogeneous vector. Having in mind the mentioned property of the �⊥ relation with
respect to the �-vectors, it is convenient to consider a completely connected non-oriented
graph with vertices V . Assign to the edges of this graph the numbers 0, 1, . . . , N − 2 in
such a way that any two edges that share a common vertex are labelled differently. The
most natural way of implementing this is the following. Identify V with Z/(N − 1) � {∗},
where ∗ is just a formal symbol. Write Z/(N − 1) additively and identify its elements
with 0, 1, . . . , N − 2. For every i, j ∈ Z/(N − 1), i �= j , assign to the edge connecting i
and j the number i + j . To every edge that connects ∗ and k ∈ Z/(N − 1), the number
2k is assigned. By that the required numbering of edges is obtained. Now, choose for
every edge an orthonormal basis in C

2, and let its elements be indexed by Z/2. Denote
the basis corresponding to the edge {∗, k}, k ∈ Z/(N − 1), as {ϕ[k]α}α∈Z/2, and the basis
corresponding to the edge {l, j}, l, j ∈ Z/(N − 1), l �= j , as {ψ[{l, j}]β}β∈Z/2. For every
l ∈ Z/(N − 1), σ ∈ L({l}), ρ ∈ L({∗}), put

�∗
ρ := C

⊗
k∈Z/(N−1)

2k

ϕ[k]ρ(k), (3)

�l
σ := C


2l

ϕ[l]σ(∗) ⊗

 ⊗
j∈Z/(N−1),

j �=l

l+j

ψ [{l, j}]σ(j)


 , (4)

where a Feynman–Maslov-type notation is used to determine the place of the factors in a

tensor product. For instance, an expression of the form
0
a ⊗

2
b ⊗ 1

c means nothing more, but
a ⊗ c ⊗ b. Note that with this notation the symbols under ⊗-product commute: for example,
0
a ⊗

2
b ⊗ 1

c =
2
b ⊗ 0

a ⊗ 1
c. It is clear that the required properties of �⊥ relation with respect to

�-rays are established.
Now, let us take care about Fπ . One can write Fπ in the form

Fπ = C

∑
ξ∈L({∗})

Aπ(ξ)
⊗

k∈Z/(N−1)

2k

ϕ[k]ξ(k), (5)

where Aπ(ξ) ∈ C are some coefficients. Note that ξ and π can be completely recovered from
their restrictions to Z/(N − 1) ⊂ V . Denote |ξ | :=∑i ξ(i), |π | :=∑i π(i), i ∈ Z/(N − 1).
The required implication �∗

ξ �⊥ Fπ ⇒ |π |+ |ξ | = 0 is equivalent to |π |+ |ξ | = 1 ⇒ �∗
ξ ⊥ Fπ .

Hence, Aπ(ξ) can be non-zero only if |π | + |ξ | = 0. One has

Aπ(ξ) = 0, if |π | + |ξ | = 1. (6)

Therefore, the collection {Aπ(ξ)}ξ,π can be viewed as a block-diagonal complex matrix with
two non-trivial blocks. One of these blocks corresponds to |π | = |ξ | = 0, and the other to
|π | = |ξ | = 1. Since the rays {Fπ }π∈L(V ) are pairwise orthogonal, one has a condition∑

ξ :|ξ |=p

Aπ(ξ)∗Aπ ′(ξ) ∝ δπ,π ′ , (7)

where |π | = |π ′| = p, p ∈ Z/2. Let us term (7) as the ‘unitarity condition’.
Now consider the implications of the requirements corresponding to the rays �l

σ , l ∈
Z/(N − 1) and Fπ . If �l

σ �⊥ Fπ , then one must have (1 + π(l)) + σ(∗) +
∑

j :j �=l σ (j) = 0.
Note that since the number of elements in Z/(N − 1) is odd, the multiplication by 2 is
invertible. This allows us to introduce a variable k = (l + j)/2 replacing the variable j in the
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tensor product in the formula for �l
σ . One derives: if π(l) + σ(∗) +

∑
j :j �=l σ (j) = 0, then

Fπ ⊥ �l
σ , i.e. ∑

ξ∈L({∗})
Aπ(ξ)δσ(∗),ξ(l)

∏
k∈Z/(N−1),

k �=l

(ψ[{l, 2k − l}]σ(2k−l), ϕ[k]ξ(k)) = 0, (8)

where (·, ·) is the inner product in C
2, linear with respect to the second argument. For every

l ∈ Z/(N − 1), this is some collection of equations indexed by π and σ . If one first chooses
a value for π , and then for σ , then one has 2N−1 possibilities for π and 2N−2 for σ . In total
there are (N − 1) × 2N−1 × 2N−2 equations. It is necessary to define ϕ[k]α and ψ[{l, j}]β in
such a way that this system has a solution as a linear system with respect to the indeterminates
Aπ(ξ), |π | = |ξ |. After that it is necessary to select such a solution that satisfies the unitarity
conditions. By that one produces a nonlinear system of equations with respect to the variables
ϕ[k]α ∈ C

2, α ∈ Z/2, and ψ[{l, j}]β ∈ C
2, β ∈ Z/2, which played the role of parameters

in the system for Aπ(ξ), and now become indeterminates themselves. It is not obvious that
it has any solution at all. Nevertheless, the solutions exist, and in fact there are quite many.
They are described in the following sections.

4. Specialization and reduction

The main system of equations (8) in its general form is hardly manageable unless one makes
some additional assumptions. Denote

u[i, j ]α,β := (ψ[{i, j}]β, ϕ[(i + j)/2]α), (9)

where i, j ∈ Z/(N − 1), i �= j ;α, β ∈ Z/2. The corresponding 2 × 2 matrices u[i, j ] are
unitary. Note that u[i, j ] = u[j, i]. Let us make a crucial assumption, which will let us
essentially simplify the equations. Specialize u[i, j ]:

u[i, j ] = 1√
2

(
1 xi,j

x∗
i,j −1

)
, |xi,j | = 1. (10)

It is important that the parameters xi,j have an absolute value 1. Since u[i, j ] = u[j, i], one
must mention the condition

xi,j = xj,i ,

where i and j vary over Z/(N − 1), i �= j .
Equation (8) for Aπ(ξ) acquires the form

∑
ξ∈L({∗}),
ξ(l)=σ(∗)

Aπ(ξ)(−1)sl (σ,ξ)


∏

k:k �=l,
σ (2k−l)=1,

ξ(k)=0

xl,2k−l



∏

k:k �=l,
σ (2k−l)=0,

ξ(k)=1

x∗
l,2k−l

 = 0,

where

sl(σ, ξ) :=
∑
k:k �=l

δσ (2k−l),1δξ(k),1;

k varies over Z/(N − 1). Multiply the left-hand side of this equation by
∏

k:k �=l,
σ (2k−l)=0

xl,2k−l .

Invoking the fact that |xi,j | ≡ 1, one obtains

∑
ξ∈L({∗}),
ξ(l)=σ(∗)

Aπ(ξ)(−1)sl (σ,ξ)

 ∏
k:k �=l,
ξ(k)=0

xl,2k−l

 = 0.
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Recall that this kind of equation holds for every l ∈ Z/(N − 1), every π ∈ L(V ) and every
σ ∈ L({l}), such that σ(∗) = π(l) +

∑
j :j �=l σ (j). Since Aπ(ξ) can be non-zero only if

ξ(l) = |π | +
∑

j :j �=l ξ(j), one may understand the summation in the latter formula as over all
ξ that satisfy |ξ | = |π | and

∑
j :j �=l (ξ(j) + π(j) + σ(j)) = 0.

Take any l, π and σ . Observe that if one takes any even number of points of
(Z/(N − 1))\{l}, and then changes the values of σ at these points by adding 1, then the
result still satisfies σ(∗) = π(l)+

∑
j :j �=l σ (j). In particular, consider the points l +1 and l +2,

and put σ1(l + 1) = 1 + σ(l + 1), σ1(l + 2) = 1 + σ(l + 2) and σ1(v) = σ(v) for v �= l + 1, l + 2.
Take the equation corresponding to (l, π, σ1), multiply it by (−1)σ(l+1) and add the result to
the equation corresponding to (l, π, σ ). By this one obtains

∑
ξ∈L({∗}),
ξ(l)=σ(∗)

Aπ(ξ)�
(1)
l (σ, ξ)(−1)sl (σ,ξ)

 ∏
k:k �=l,
ξ(k)=0

xl,2k−l

 = 0,

where

�
(1)
l (σ, ξ) := 1 + (−1)σ(l+1)(−1)sl (σ1,ξ)−sl (σ,ξ).

Note that for any integer q, one has (−1)q = (−1)−q . Since

sl(σ1, ξ) + sl(σ, ξ) =
∑

k:k �=l,
2k−l∈{l+1,l+2}

(δσ(2k−l),1 + δσ(2k−l),0)δξ(k),1,

the expression for �
(1)
l (σ, ξ) reduces to

�
(1)
l (σ, ξ) = 1 + (−1)δσ(l+1),1+

∑
s=1,2 δξ(l+s/2),1 .

Next, transform in a similar way the just obtained system of equations for Aπ(ξ)

(containing �
(1)
l (σ, ξ)) with respect to the points (l + 2, l + 3), then with respect to (l + 3, l + 4),

and so forth until (l + (N − 3), l + (N − 2)). This yields

∑
ξ∈L({∗}),
ξ(l)=σ(∗)

Aπ(ξ)

(
N−3∏
m=1

�
(m)
l (σ, ξ)

)
(−1)sl (σ,ξ)

 ∏
k:k �=l,
ξ(k)=0

xl,2k−l

 = 0,

where

�
(m)
l (σ, ξ) = 1 + (−1)δσ(l+m),1+

∑
s=m,m+1 δξ(l+s/2),1 .

Now let us compute the quantities �
(m)
l (σ, ξ). For any x, y, z ∈ Z/2, the quantity

1 + (−1)δx,1+δy,1+δz,1 equals 2, whenever δx,1 + δy,1 + δz,1 is even, and 0, otherwise. Hence,
1 + (−1)δx,1+δy,1+δz,1 = 2δx+y+z,0, and one obtains �

(m)
l = 2δσ(l+m)+

∑
s=m,m+1 ξ(l+s/2),0. Therefore,

the non-trivial contributions to the sum over ξ in the equation for Aπ(ξ) stem only from those
terms, which satisfy

σ(l + m) +
∑

s=m,m+1

ξ(l + s/2) = 0, m = 1, 2, . . . , N − 3.

Fix σ and l, and put ξ(l + 1/2) = q, q ∈ Z/2. The rest of the values ξ(l + (m + 1)/2),m =
2, 3, . . . , N − 2, become determined. Since q can be only 0 or 1, there are at most two
non-trivial terms in the sum.

It is more convenient to index the equations not by σ , but by the non-trivial terms
themselves. Take any equation and take any of its non-trivial terms. Denote the corresponding
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value of ξ by ξ0. The corresponding value σ0 of σ is then recovered as follows. For
m = 1, 2, . . . , N − 3, one has σ0(l + m) = ξ0(l + m/2) + ξ0(l + (m + 1)/2). The remaining
σ0(l + (N − 2)) is determined by

∑
j :j �=l (ξ0(j) + π(j) + σ0(j)) = 0.

Consider the equation corresponding to (l, π, σ0). The second non-trivial term of the sum
over ξ corresponds to ξ = ξ l

0, determined by ξ l
0(j) = 1 + ξ0(j), j ∈ Z/(N − 1), j �= l, and∣∣ξ l

0

∣∣ = |π |. The latter implies ξ l
0(l) = ∑j :j �=l (1 + ξ0(j)) + |π |. Since N is even, the number

of terms in the latter sum over j , which is N − 2, is also even. Taking into account that
|ξ0| = |π |, one obtains ξ l

0(l) = ξ0(l). The equation acquires the form

X
(l)
0 (ξ0)(−1)sl (σ0,ξ0)Aπ(ξ0) + X

(l)
1 (ξ0)(−1)sl (σ0,ξ

l
0)Aπ

(
ξ l

0

) = 0,

where X(l)
p (ξ0) := ∏ k:k �=l,

ξ0(k)=p

xl,2k−l . We need to compute (−1)q, q := sl(σ0, ξ0) + sl

(
σ0, ξ

l
0

)
,

i.e. to find out when q is even and when it is odd. Substituting the expressions for ξ l
0, one

obtains q =∑k:k �=l δσ0(2k−l),1. Hence, q is even iff
∑N−2

m=1 σ0(l + m) = 0. But this sum is just∑
j :j �=l (ξ0(j) + π(j)). Invoking the fact |π | = |ξ0|, one finally obtains q = ξ0(l) + π(l). The

equation, after dropping down the index 0 near ξ0 and ξ l
0, becomes ∏

k:k �=l,
ξ(k)=0

xl,2k−l

Aπ(ξ) + (−1)ξ(l)+π(l)

 ∏
k:k �=l,
ξ(k)=1

xl,2k−l

Aπ(ξ l) = 0. (11)

Recall that the parameter l varies over Z/(N − 1), π ∈ L(V ), and ξ is any element of L({∗}),
such that

∑
i∈Z/(N−1)(ξ(i) + π(i)) = 0; ξ l ∈ L({∗}) is defined by ξ l(j) := 1 + ξ(j), j �= l,

and ξ l(l) = ξ(l) (of course, ξ l(∗) = 0). It is not difficult to solve this system with respect to
Aπ(ξ) and obtain a condition on {xi,j }i,j as a condition of solvability. This is implemented in
the following sections.

5. Divisibility by 4

Recall that we have made an assumption about the number of points N in V = (Z/(N−1)) � {∗}.
It has to be not just even, but divisible by 4, i.e. N = 4n, n ∈ N. Let us find some solutions for
the reduced system of equations (11) for Aπ(ξ) and illustrate how the mentioned assumption
emerges.

We have not obtained yet a condition on {xi,j }i,j that ensures solvability of the system.
Recall that |xi,j | ≡ 1. Nevertheless, let us try if it is possible to put all xi,j = 1. In this case
one has

Aπ(ξ) + (−1)ξ(l)+π(l)Aπ(ξ l) = 0,

for every l and ξ, π , such that |ξ | = |π |. Rewrite (−1)ξ(l)+π(l) as (−1)δξ(l),1+π(l) . Note that since
|ξ | = |π |, and since N − 1 is odd, the number of points in {i ∈ Z/(N − 1)|ξ(i) �= π(i)} is
even. Hence, for |ξ | = |π |, one may define

aπ(ξ) := (−1)
1
2

∑
i δξ(i),1+π(i) . (12)

Put aπ(ξ) := 0 in case |ξ | = 1+ |π |. Claim that Aπ(ξ) = aπ(ξ) is a solution of the considered
system. Indeed, one needs to show that

(−1)q1/2 + (−1)δξ(l),1+π(l) (−1)q2/2 = 0,

where q1 :=∑i δξ(i),1+π(i), and q2 :=∑i δξ l (i),1+π(i). But this is equivalent to 1 + (−1)q = 0,
where

q := δξ(l),1+π(l) +
1

2

2δξ(l),1+π(l) +
∑
i:i �=l

[δξ(i),1+π(i) + δ1+ξ(i),1+π(i)]

 .
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Therefore, one arrives at

1 + (−1)
N−2

2 = 0.

The latter is true for N = 4n, and false for N = 4n + 2.
We have just found a solution of system (11) for Aπ(ξ) in case all xi,j = 1. Now let us

prove that the unitarity condition is fulfilled as well. Take any r ∈ Z/2 and take any π and
π ′, such that |π | = |π ′| = r . Claim∑

ξ :|ξ |=r

a∗
π (ξ)aπ ′(ξ) = 2N−2δπ,π ′ .

Let us first consider the case π = π ′. It is necessary to show that
∑

ξ :|ξ |=r (−1)
∑

i δξ(i),1+π(i) =
2N−2. Consider the identity∑

i

(δξ(i),1 − δπ(i),1) ≡
∑

i

[δξ(i),1δπ(i),0 − δξ(i),0δπ(i),1].

One needs to compute the sum∑
i

δξ(i),1+π(i) =
∑

i

[δξ(i),1δπ(i),0 + δξ(i),0δπ(i),1].

Taking into account that the signs of the terms of the sum when it stands in the exponent of
−1 are unessential, one can apply the above identity and derive

(−1)
∑

i δξ(i),1+π(i) = (−1)
∑

i (δξ(i),1−δπ(i),1) = (−1)|ξ |+|π | = 1.

Taking the sum over ξ, |ξ | = r , one obtains 2N−2, just as required.
Now consider the case π �= π ′. Recall that |π | = |π ′| = r ∈ Z/2. It is necessary to show

that
∑

ξ :|ξ |=r (−1)�(ξ,π,π ′)/2 = 0, where

�(ξ, π, π ′) :=
∑

k∈Z/(N−1)

(δξ(k),1+π(k) + δξ(k),1+π ′(k)).

Consider a sum S :=∑k δξ(k),1[δπ(k),1 + δπ ′(k),1], and rewrite it in two different ways:

S = 2
∑

k

δξ(k),1 −
∑

k

δξ(k),1[δπ(k),0 + δπ ′(k),0],

S =
∑

k

[δπ(k),1 + δπ ′(k),1] −
∑

k

δξ(k),0[δπ(k),1 + δπ ′(k),1].

Subtracting one equality from the other and regrouping the terms, one obtains an identity

−2
∑

k

δξ(k),1 +
∑

k

[δπ(k),1 + δπ ′(k),1] = −
∑

k

δξ(k),1[δπ(k),0 + δπ ′(k),0]

+
∑

k

δξ(k),0[δπ(k),1 + δπ ′(k),1].

Use this fact to transform �(ξ, π, π ′):

�(ξ, π, π ′) =
∑

k

∑
s=0,1

δξ(k),s(δ1+π(k),s + δ1+π ′(k),s)

= 2
∑

k

δξ(k),1[δπ(k),0 + δπ ′(k),0] − 2
∑

k

δξ(k),1 +
∑

k

[δπ(k),1 + δπ ′(k),1].

Taking into account that (−1)
∑

k δξ(k),1 = (−1)|ξ | = (−1)r , one reduces the problem of the
proof of

∑
ξ :|ξ |=r (−1)�(ξ,π,π ′)/2 = 0 to∑

ξ :|ξ |=r

(−1)
∑

k δξ(k),1[δπ(k),0+δπ ′(k),0] = 0.
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Note that since δπ(k),0 + δπ ′(k),0 is 0 or 2 if π(k) = π ′(k), and 1 otherwise, the sum over k in
the latter formula becomes the sum of δξ(k),1 over all k, such that π(k) �= π ′(k). Now look at
the sets

{k|π(k) = 0} =
⊔

p∈Z/2

{k|π(k) = 0 & π ′(k) = p},

{k|π ′(k) = 0} =
⊔

p∈Z/2

{k|π(k) = p & π ′(k) = 0}.

The cardinalities of both sets on the left-hand sides viewed in Z/2 are 1 + r . Apply #(·) to
the left- and right-hand sides and subtract the two equalities. Due to the mentioned fact, the
number

m := #{k|π(k) �= π ′(k)}
is even. Note that m �= N − 1, since N − 1 is odd, and m �= 0, since π �= π ′. For every
ξ, |ξ | = r , one may consider

p := #{k|ξ(k) = 1 & π(k) �= π ′(k)}, q := #{k|ξ(k) = 1 & π(k) = π ′(k)}.
Since p + q is just the cardinality of {k|ξ(k) = 1}, one obtains [p + q]2 = r , where
[·]2 : Z � Z/2 is the canonical epimorphism. For any given p and q, 0 � p � m, 0 � q �
N − 1 − m, [p + q]2 = r , there exist precisely C

p
mC

q

N−1−m ways to choose the corresponding
ξ (Cp

m and C
q

N−1−m are the binomial coefficients). Hence, the required sum becomes

∑
ξ :|ξ |=r

(−1)
∑

k:π(k)�=π ′(k) δξ(k),1 =
m∑

p=0

N−1−m∑
q=0,

[p+q]2=r

Cp
mC

q

N−1−m(−1)p.

All that remains to show is that the expression on the right-hand side vanishes. Denote it by S
and rewrite as follows:

S =

 m∑
p=0,

[p]2=r

N−1−m∑
q=0,

[q]2=0

+
m∑

p=0,
[p]2=1+r

N−1−m∑
q=0,

[q]2=1

Cp
mC

q

N−1−m(−1)p.

Observe that
N−1−m∑

q=0,
[q]2=0

C
q

N−1−m =
N−1−m∑

q=0,
[q]2=1

C
q

N−1−m,

since the difference between these two expressions is equal to (1 + (−1))N−1−m = 0 (recall
that m �= N − 1). Therefore, S can be written as

S =

N−1−m∑
q=0,

[q]2=0

C
q

N−1−m

 m∑
p=0

Cp
m(−1)p.

But the sum over p is just (1 + (−1))m = 0 (recall that m �= 0). Hence S = 0, and this
completes the proof of the unitarity for aπ(ξ).

Note that the fact that 4 divides N has been used only in the proof that aπ(ξ) is a solution
of the system of equations for Aπ(ξ). The fact that {aπ(ξ)}ξ,π satisfy the unitarity condition
relies just on the assumption that N is even.
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6. General case

Note that one can rewrite the system of equations (11) for Aπ(ξ) as follows: ∏
k:k �=l,

ξπ (k)=0

x
1−2δπ(k),1

l,2k−l

Aπ(ξ) + (−1)ξπ (l)

 ∏
k:k �=l,

ξπ (k)=1

x
1−2δπ(k),1

l,2k−l

Aπ(ξ l) = 0,

where ξπ (i) := ξ(i) + π(i), i ∈ Z/(N − 1). Therefore it suffices to investigate only the
subsystem corresponding to, say, π(i) ≡ 0. In order to obtain a solution for a general π , one
needs to replace each xi,j with x

1−2δπ((i+j)/2),1

i,j , and each ξ(i) with ξπ(i), i.e.

Aπ(ξ) = CπA(ξπ), xi,j → x
1−2δπ((i+j)/2),1

i,j , (13)

where Cπ ∈ C, and A(·) is Aπ(·) corresponding to π(i) ≡ 0. Since the coefficients Aπ(ξ)

in (5) are meant to define the rays Fπ , it is necessary to assume Cπ �= 0. Without loss of
generality, Cπ = 1.

Put all π(i) = 0. Let us derive an expression for A(ξ). Note that for |ξ | = 1, equation (6)
implies A(ξ) = 0. Take any ξ, |ξ | = 0. Since N − 1 is odd, this implies that ξ(i) takes a
value 0 in odd number of points i ∈ Z/(N − 1), and 1 in even number of points. Consider
the set α of points of Z/(N − 1) where ξ has the value 0, and equip it with a numbering of
the form α = {α0, α±1, . . . , α±s} (in total there are 2s + 1 points). Similarly, consider the set
of points of Z/(N − 1) where the value of ξ is 1, and equip it with a numbering of the form
β = {β±1, . . . , β±q} (in total there are 2q points). One has (2s + 1) + 2q = N − 1. One
may assume that αi < αi ′ iff i < i ′, and βj < βj ′ iff j < j ′. From the equation for A(ξ),
corresponding to l = αs , one obtains

A

(
0 at α,

1 at β

)
= −

∏
k∈β xαs,2k−αs∏

k∈α\{αs } xαs,2k−αs

A

(
0 at β ∪ {αs},
1 at α\{αs}

)
.

Similarly, from the equation for A(0 at β ∪ {αs}, 1 at α\{αs}), corresponding to l = α−s , one
obtains

A

(
0 at β ∪ {αs},
1 at α\{αs}

)
=
∏

k∈α\{α±s } xα−s ,2k−α−s∏
k∈β∪{α−s } xα−s ,2k−α−s

A

(
0 at α\{α±s},
1 at β ∪ {α±s}

)
,

(this time there is no minus sign before the fraction). It is convenient to denote y(k, j) :=
xj,2k−j , and put formally xi,i ≡ 1. Hence y(i, i) ≡ 1. Substituting the latter formula into the
formula before it, and using the mentioned formal notation, one obtains

A

(
0 at α,

1 at β

)
=

(∏

k∈α

y(k, α−s)

y(k, αs)

)∏
k∈β

y(k, αs)

y(k, α−s)

 −1

y2(αs, α−s)
A

(
0 at α\{α±s},
1 at β ∪ {α±s}

)
.

Now, perform the same method, but this time using α±(s−1), with the A(·) variable standing
on the right-hand side of the latter formula. This yields

A

(
0 at α\{α±s},
1 at β ∪ {α±s}

)
=

 ∏

k∈α\{α±s }

y(k, α−(s−1))

y(k, αs−1)

 ∏
k∈β∪{α±s }

y(k, αs−1)

y(k, α−(s−1))


× −1

y2(αs−1, α−(s−1))
A

(
0 at α\{α±s , α±(s−1)},
1 at β ∪ {α±s , α±(s−1)}

)
.
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Substitute this result into the above formula and rewrite the expression so that there appear
again the products of the form

∏
k∈α and

∏
k∈β . One obtains

A

(
0 at α,

1 at β

)
=
 ∏

k∈{α±s }

y2(k, αs−1)

y2(k, α−(s−1))

 ∏
m=s,s−1

(∏
k∈α

y(k, α−m)

y(k, αm)

)∏
k∈β

y(k, αm)

y(k, α−m)


×
[ ∏

m=s,s−1

−1

y2(αm, α−m)

]
A

(
0 at α\{α±s , α±(s−1)},
1 at β ∪ {α±s , α±(s−1)}

)
.

Proceeding this way, one finally arrives at a formula that has on its right-hand side a variable of
the form A

(
0α0

)
, where 0α0 denotes a function V → Z/2 the restriction of which to Z/(N −1)

is 0 only at one point α0, and 1 otherwise. The result is of the form

A

(
0 at α,

1 at β

)
=
 ∏

1�m<n�s

y2(αn, αm)y2(α−n, αm)

y2(αn, α−m)y2(α−n, α−m)


×


s∏
m=1

(∏
k∈α

y(k, α−m)

y(k, αm)

)∏
k∈β

y(k, αm)

y(k, α−m)


[

s∏
m=1

−1

y2(αm, α−m)

]
A
(
0α0

)
.

(14)

Recall that y(k, j) := xj,2k−j , k �= j , and y(i, i) := 1. It remains to express A
(
0α0

)
from the

corresponding equation with l = α0. One has

A
(
0α0

) = −
(

N−2∏
k=0

y(k, α0)

)
A(0), (15)

where 0 is a function V → Z/2, the restriction of which to Z/(N − 1) is a constant function
with value 0. Hence, all A(ξ), except A(0), are determined. The value of A(0) remains
arbitrary. Since A(ξ) �≡ 0 is required, without loss of generality, one may put A(0) = 1.

Let us compare these formulae with the result of the previous section. Recall that
in order to obtain Aπ(ξ), |ξ | = |π |, it is necessary to take an expression for A(ξπ) and
replace the parameters xi,j with x

1−2δπ((i+j)/2),1

i,j . The latter is equivalent to replacing y(k, j)

with y(k, j)1−2δπ(k),1 . If one specializes all y(k, j) to 1, one obtains Aπ(ξ) = cπ(−1)sπ +1,
where sπ := (#{i|ξπ(i) = 0} − 1)/2, and cπ is an arbitrary constant. One can also define
qπ := #{i|ξπ(i) = 1}/2. Since 2qπ +(2sπ +1) = N −1, one has (−1)sπ +1 = (−1)(N−2)/2−qπ +1.
Recalling that 4 divides N, one derives that (N −2)/2 is odd, and therefore (−1)sπ +1 = (−1)qπ .
But qπ is precisely (1/2)

∑
i δξ(i),1+π(i), i.e. if one puts cπ = 1, then Aπ(ξ) becomes aπ(ξ),

solution (12) described in the previous section.
Consider any solution of the system for Aπ(ξ) and separate the factor aπ(ξ), i.e. write

Aπ(ξ) = aπ(ξ)Ãπ (ξ). The substitution of the latter expression into equation (11) for Aπ(ξ)

corresponding to (l, π, ξ) yields a similar equation for Ãπ (ξ), which looks almost the same
and has just one difference: instead of (−1)ξ(l)+π(l) one has just the factor −1 in front of
the second term. The above considerations imply that any solution Ãπ (ξ) is of the form
Ãπ (ξ) = cπb(ξ), where cπ is a constant with respect to ξ , and b(ξ) is some expression of
the form

∏
i,j x

εi,j (ξ)

i,j with εi,j (ξ) = ±1 being some numbers. Note that the fact |xi,j | ≡ 1
implies |b(ξ)| ≡ 1. The constants cπ can, of course, be chosen differently for different values
of parameters {xi,j }i,j , but what is important is that Ãπ (ξ) splits into a product of two factors,
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one depending only on π , and the other having an absolute value 1 and depending only on ξ .
This allows us to establish the unitarity condition in the general case∑

ξ :|ξ |=p

A∗
π (ξ)Aπ ′(ξ) = c∗

πcπ ′
∑

ξ :|ξ |=p

a∗
π (ξ)aπ ′(ξ)|b(ξ)|2 = 2N−2c∗

πcπ ′δπ,π ′ ,

where |π | = |π ′| = p, p ∈ Z/2.

7. Conditions of existence

It remains to investigate the problem of existence of solutions of the overdetermined linear
system of equations for Aπ(ξ). It suffices to consider only the equations for A(ξ), |ξ | = 0.
For every ξ , let the notation α = {α0, α±1 . . . , α±s} and β = {β±1, . . . , β±q} be as in the
previous section. Require that expression (14) for A(ξ) in terms of α and β does not depend
on the choice of numbering of the points of α and β. The independence of the numbering of
β is seen directly from the formula, so it is necessary to focus on α. The requirement that for
any m, 1 � m � s, it is possible to interchange the numbers of αm and α−m yields a condition(∏

k∈α

y(k, α−m)

y(k, αm)

)∏
k∈β

y(k, αm)

y(k, α−m)

 1

y2(αm, α−m)

=
(∏

k∈α

y(k, αm)

y(k, α−m)

)∏
k∈β

y(k, α−m)

y(k, αm)

 1

y2(α−m, αm)
.

Rewrite it as follows:

y2(α−m, αm)

(∏
k∈α

y2(k, α−m)

)∏
k∈β

y2(k, αm)


= y2(αm, α−m)

(∏
k∈α

y2(k, αm)

)∏
k∈β

y2(k, α−m)

 .

Cancelling out the factor y2(α−m, αm)y2(αm, α−m) and recalling that y(i, i) ≡ 1, one obtains
Yα,β(α−m, αm) = Yα,β(αm, α−m), where

Yα,β(α−m, αm) :=

 ∏
k∈α,

k �=α±m

y2(k, α−m)


∏

k∈β

y2(k, αm)

 .

In particular, since there exists ξ such that the corresponding β = ∅, one has for all
i, j ∈ Z/(N − 1), i �= j ,∏

k:k �=i,j

y2(k, i) =
∏

k:k �=i,j

y2(k, j),

where k varies over Z/(N − 1). Now take the case α = {α0, α±1}. Then a product
∏

k∈β is
just a product over all k, such that k �= α0, α±1. If one writes the corresponding expressions
and then uses the previous formula with respect to the pair of points {α1, α−1}, one obtains
y2(α0, α−1)/y

2(α0, α1) = y2(α0, α1)/y
2(α0, α−1). Hence, for any pairwise non-equal i, j

and k, one has

y4(k, i) = y4(k, j).
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Therefore, each y(k, j), k �= j , is of the form y(k, j) = λ(k)z(k, j), where λ(k) satisfies
|λ(k)| = 1, and z(k, j) is a fourth root of unity, z4(k, j) = 1. Recall that by definition
y(i, i) ≡ 1. In particular, if one puts all z(k, j) = 1, and substitutes the corresponding y(k, j)

into A(ξ), one obtains A(ξ) = (−1)s+1Ã(ξ):

Ã(ξ) =
(

s∏
m=1

λ(αm)

λ(α−m)

)(
s∏

m=1

1

λ2(αm)

) ∏
k:k �=α0

λ(k) =
∏
k∈β

λ(k).

In the general case, taking into account that (z(k, j))2 = ±1, and hence (z(k, j))2 =
1/(z(k, j))2, the expression for A(ξ) can be transformed into

A(ξ) = (−1)s+1

∏
k∈β

λ(k)

 Â(ξ),

where Â(ξ) is a monomial in variables z(k, j). Note that the first condition (containing
Yα,β(·, ·)) on y(k, j) derived above, after the substitution y(k, j) = λ(k)z(k, j), k �= j , yields∏

k:k �=i,j

z2(k, i) =
∏

k:k �=i,j

z2(k, j). (16)

Recall that the second condition y4(k, j) = y4(j, k) has reduced to

z4(k, j) = 1, k �= j, (17)

and, by definition, one has z(i, i) = 1. Let us derive other conditions.
Consider again the general formulae (14), (15) for A(ξ). Denote by α± the sets

α+ := {α1, α2, . . . , αs}, α− := {α−1, α−2, . . . , α−s}. One may pick any two points with
opposite indices, say αm ∈ α+ and α−m ∈ α−, and then interchange their locations, i.e. put
α−m in α+ and αm in α−. The conditions we have already derived ensure that A(ξ) remains
invariant. Now, for s � 2, it is necessary to require that it is invariant if one switches the
indices of any two points from the same set, i.e. both from α+ or both from α−. Let us start
with α1 and α2. Look at the general formula for A(ξ). Note that the expression in {· · ·}
brackets, and the expression for A(0α) are already invariant, so it is necessary to focus on the
(· · ·) and [· · ·] factors. Writing the corresponding equality and cancelling out the common
factors, one obtains

y2(α2, α1)y
2(α−2, α1)

y2(α2, α−2)
= y2(α1, α2)y

2(α−2, α2)

y2(α1, α−2)
.

Perform the substitutions y(k, j) = λ(k)z(k, j), k �= j, k, j = α1, α±2, and change the
notation for indices α1 = p, α2 = q, α−2 = r . This yields∏

i,j∈{p,q,r},
i �=j

z2(i, j) = 1.

This equation has to be true for all pairwise distinct p, q, r . Denote ζ(i, j) :=
z2(i, j)z2(j, i), i �= j . Invoking the agreement z(k, k) ≡ 1, put ∀ k : ζ(k, k) := 1. Then for
any p, q, r , not necessarily pairwise distinct, one has a cocycle-type condition

ζ(p, q)ζ(q, r)ζ(r, p) = 1. (18)

Note that ζ is symmetric, ζ(i, j) = ζ(j, i), and normalized on 1. Hence, ζ(i, j) in (18) is
of the form ζ(i, j) = ϕ(i)ϕ(j), where ϕ : Z/(N − 1) → C is some function, such that
ϕ2(i) ≡ 1, i.e. ϕ(i) = ±1. Observe that since N − 1 is odd, for any s ∈ Z/(N − 1)

we have [s]2 = 0 iff [−s]2 = 1 (recall that [·]2 : Z/(N − 1) � Z/2 denotes the
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canonical epimorphism). If one assigns the values of z2(k, k + l), for all k and, say, only
for all l, [l]2 = 1, then one can extend the function z2(·, ·) to all points according to
z2(k, k − l) = ϕ(k)ϕ(k − l)/z2(k − l, (k − l) + l) (l satisfies [l]2 = 1), z2(k, k) = 1.
Since z2(i, j) can only be ±1, and ϕ(i) can only be ±1, we have ϕ(i)z2(i, j) = ϕ(j)z2(j, i),
for all i, j, i �= j . Recalling that y(k, l) = λ(k)z(k, l), k �= l, and that there are no conditions
on λ(k) so for except |λ(k)| = 1, we see that the factor ϕ(·) is unimportant and can be
incorporated into λ(·). Therefore, without loss of generality, y(k, l) = λ(k)z(k, l), k �= l, and
for all i, j

z2(i, j) = z2(j, i). (19)

The latter assumption allows us to rewrite Â(ξ) in the form

Â

(
0 at α,

1 at β

)
:=
(∏

k∈α

∏
l∈α− z(k, l)∏
l∈α+

z(k, l)

)∏
k∈β

∏
l∈α+

z(k, l)∏
l∈α− z(k, l)


 ∏

i,j∈α\{α0},
i<j

z2(i, j)

 N−2∏
k=0

z(k, α0).

(20)

It is now clear that we have an expression for A(ξ), which does not feel the choice of numbering
of points in α+ and α−. Recalling the fact that for any m one may interchange the roles of αm

and α−m, we conclude that A(ξ) does not depend on the choice of partitioning of α\{α0} into
α+ and α−. It remains to investigate the requirement of no dependence on the choice of the
marked point α0 ∈ α.

Without loss of generality, look at α0 and α1. One obtains ∏
j∈α,

j �=α0,α1

z2(α1, j)

Zα,β(α−1, α1)
∏
k

z(k, α0) =

 ∏
j∈α,

j �=α0,α1

z2(α0, j)

Zα,β(α−1, α0)
∏
k

z(k, α1),

where

Zα,β(i, j) :=
(∏

k∈α

z(k, i)

z(k, j)

)∏
k∈β

z(k, j)

z(k, i)

 ,

i, j ∈ Z/(N −1). Cancelling the common factors and getting rid of denominators, one arrives
at

z2(α1, α0)
∏
i∈α,

i �=α0,α1

z2(α1, i)z
2(i, α0) = z2(α0, α1)

∏
i∈α,

i �=α0,α1

z2(α0, i)z
2(i, α1).

But the latter equality is implied directly by the assumption z2(i, j) ≡ z2(j, i). Therefore, no
new conditions on z(i, j) emerge.

We have a well-defined expression for A(ξ), i.e. it does not depend on the choice of
numbering of points in α := {i | ξ(i) = 0} and β := {j | ξ(j) = 1}. Still it does not prove
that A(ξ) satisfies the whole system equations. It is necessary to verify that the substitution of
A(ξ) into the corresponding system indeed turns each of the equations into an identity. This
is equivalent to verifying∏

k∈α,
k �=l

z(k, l)

 Â

(
1 at α,

0 at β

)
=

∏
k∈β,
k �=l

z(k, l)

 Â

(
1 at β�{l},
0 at α�{l}

)
,
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for all l ∈ Z/(N −1). With the notation as above, it suffices to consider just two cases: l = α0

and l = βq .
Specialize first to the case l = α0. The sets α′ := β�{l} and β ′ := α�{l} are

of the form α′ = β ∪ {α0}, β ′ = α\{α0}. As above, fix some numbering for α and
β, #α = 2s + 1, #β = 2q. It is natural to equip α′ and β ′ with the following numbering:
α′

0 := α0, α
′
j := βj , j = ±1,±2, . . . ,±q;β ′

i := αi, i = ±1,±2, . . . ,±s. Substitute the
corresponding expressions (20) for Â(·) into the last equation and simplify the result as
follows. First of all, get rid of all denominators and write the equation as an equality between
two products of products of the form

∏
i,j zt (i, j), t = 1 or 2. After that, split each of the

products
∏

i,j zt (i, j) into several factors of the form
∏

i∈I,j∈J zt (i, j), where I and J are one
of the following sets: α+, α−, β+, β−, or a one-point set {α0}. Simplify the expressions using
the assumptions z2(i, j) = z2(j, i) and z4(i, j) = 1, and invoking the convention z(i, i) = 1.
Cancel the common factors on the left- and right-hand sides of the equation. Finally, dividing
the left over the right-hand side, one arrives at N−2∏

k,j=0,
k<j

z(k, j)

z(j, k)


 ∏

k∈α−∪β−,
j∈α+∪β+∪{α0}

z2(k, j)

 = 1.

Note that z(k, j)/z(j, k) is symmetric with respect to the permutation of k and j . Denote the
expression in the square brackets by �(α− ∪ β−). Since z2(i, j) = z2(j, i) and z2(i, i) =
z2(j, j) = 1, one has

∏
k z2(k, i) = ∏k z2(k, j), where k varies over the entire Z/(N − 1).

Hence, there exists g ∈ {±1}, such that for all i one has
∏

k z2(k, i) = g. In particular, for all
k ∈ α− ∪ β− this allows us to derive z2(k, α0) = z2(α0, k) = g

∏
m∈(α−∪β−)∪(α+∪β+) z2(m, k).

Expressing z2(k, α0) this way in �(α− ∪ β−), regrouping the factors and taking into account
that #(α− ∪ β−) = (N − 2)/2 is odd, one derives

�(α− ∪ β−) = g

 ∏
k∈α−∪β−,
j∈α+∪β+

z4(k, j)

 ∏
k,j∈α−∪β−,

k<j

z4(k, j) = g.

Therefore, one has a condition
∏

k,j :k<j z(k, j)/z(j, k) = g. Squaring the left- and the
right-hand sides, taking a product over all k and using the assumptions about z2(i, j),
one derives

∏N−2
k,j=0 z2(k, j) = g2 = 1. One the other hand, the latter product is just∏N−2

k=0

(∏N−2
j=0 z2(k, j)

) = gN−1 = g. Therefore, g = 1. Recall that z(k, j)/z(j, k) is
symmetric with respect to the permutation of j and k. Hence, one may take any relation Q
on Z/(N − 1), such that ∀k, j, j �= k : (k, j) ∈ Q ⇔ (j, k) �∈ Q, and rewrite the product in
the (· · ·) factor in the above condition as

∏
(k,j)∈Q z(k, j)/z(j, k). In particular, it is possible

to take Q being formed by all ordered pairs (k, j), such that [j − k]2 = 1 (recall that since
N − 1 is odd, [j − k]2 = 1 iff [k − j ]2 = 0). Then the condition on z(k, j) acquires the form∏

k,j∈Z/(N−1),
[j−k]2=1

z(k, j) =
∏

k,j∈Z/(N−1),
[j−k]2=1

z(j, k). (21)

But this condition implies that
∏

j :j �=k z2(k, j) equals∏
m:[m]2=1

z2(k, k + m)z2(k, k − m) =
∏

m:[m]2=1

z4(k, k + m) = 1,

i.e. condition (16) is implied by (17), (19), (21).
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Now consider the case l = βq . Essentially it is investigated as the case above. For this
l one has α′′ := β�{l} = β\{βq}, β ′′ := α�{l} = α ∪ {βq}. Hence #α′′ = 2q − 1, and
#β ′′ = 2s + 2. It is natural to put α′′

0 = β−q, α
′′
+ = β+\{βq}, α′′

− = β−\{β−q}, β ′′
+ = α+ ∪ {α0}

and β ′′
− = α− ∪ {βq}. The following equality is required:∏

k∈α,
k �=βq

z(k, βq)

 Â

(
0 at α,

1 at β

)
=

∏
k∈β,
k �=βq

z(k, βq)

 Â

(
0 at α′′,
1 at β ′′

)
.

Substitute the corresponding expressions for Â(·) (see (20)) into this equality and then
transform it as follows. Get rid of the denominators, and then rearrange the factors
on the left- and right-hand sides so that each becomes a product of products of the
form
∏

i∈I,j∈J zt (i, j), where t = 1 or 2, and I and J are one of the following sets:
α+, α−, β+\{βq}, β−\{β−q}, {α0}, {βq} or {β−q}. Simplify the expressions using z(i, i) =
1, z2(i, j) = z2(j, i) and z4(i, j) = 1. Finally, divide the left-hand side over the right-hand
side, and simplify the result again. A brute force calculation yields N−2∏

k,j=0,
k<j

z(k, j)

z(j, k)

�((β−\{β−q}) ∪ (α− ∪ {βq})) = 1.

But the � factor on the left-hand side is itself equal to 1, so one arrives just at condition (21)
already derived above.

Finally, it remains to recall that xi,j = λ((i + j)/2)z((i + j)/2, j), i �= j , and that
∀i, j, i �= j : xi,j = xj,i . This yields z((i + j)/2, i) = z((i + j)/2, j), or, what is
equivalent, ∀k,m : z(k, k + m) = z(k, k − m). Rewriting condition (21) on z in the form∏

k

∏
m:[m]2=1 z(k, k + m) = ∏k

∏
m:[m]2=1 z(k, k − m), one can see that it is satisfied. Next,

since the square z2(i, j) is symmetric with respect to the permutation of i and j , one can always
represent z(k, j) in the form z(k, j) = �(2k − j, j)µ(k, j), where ∀k, j : µ(k, j) = µ(j, k),
and ∀i, j : �2(i, j) = 1. One has µ4(k, j) = 1 and µ2(k, k + m) = µ2(k, k − m). It is always
possible to adjust µ(·, ·) and �(·, ·) so that ∀k,m : µ(k, k + m) = µ(k, k − m). The formula
for xi,j , i �= j , now becomes

xi,j = �(i, j)λ

(
i + j

2

)
µ

(
i + j

2
, j

)
. (22)

Since xi,j = xj,i , there is a condition ∀i, j : �(i, j) = �(j, i). Note that if one takes any µ

and � with the mentioned properties, and puts z(k, j) = �(2k − j, j)µ(k, j), then one has
automatically ∀k,m : z(k, k + m) = z(k, k − m), together with all other required properties.

The functions µ and � in (22) can be interpreted as follows. Consider a unit circle in C

centred at zero, and mark on it the points ei2πm/(N−1), m = 0, 1, . . . , N − 2. Identify naturally
these points with the elements of Z/(N −1). Look at all chords connecting the marked points.
To define a function µ is the same as to define a function on all these chords with values in the
roots of unity of degree 4. Whenever two chords have the same length and share a common
vertex, the corresponding values of the function must coincide. Note that if N − 1 is prime,
then this implies that the value µ(i, j) is determined by j − i. The definition of � in (22) is
equivalent to assigning the numbers ±1 to the chords in an arbitrary manner.

This completes the investigation of the conditions of solvability of the system for Aπ(ξ).
Since these conditions can be satisfied, one is able to construct new examples of non-
bicolourable configurations of rays. Let us summarize the results. Recall that the described
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construction involves a set V := (Z/(N − 1)) � {∗}, where ∗ is a formal symbol. To
every v ∈ V , a collection of rays �v

σ , σ ∈ L({v}), in (C2)⊗(N−1) is assigned, and there is
also one more collection of rays Fπ, π ∈ L(V ), defined in terms of Aπ(ξ). Invoking the
notation (1) and that p0 = 1, p1 = 0, one has L({v}) = {φ : V → Z/2|φ(v) = 0}, and
L(V ) = {φ : V → Z/2|∑z∈V φ(z) = 1}.

Theorem 1. Let N ∈ N be a positive integer divisible by 4. Let λ : Z/(N − 1) → C

and µ, � : (Z/(N − 1))2 → C be any functions having the values on a unit circle, in
roots of unity of degree 4, and in roots of unity of degree 2, respectively. Assume that both
µ and � are symmetric with respect to the permutation of their two arguments, and that
∀j, k : µ(k, k + j) = µ(k, k − j). Let {ϕ[k]α}α∈Z/2, k ∈ Z/(N − 1), be any family of
orthonormal bases in C

2. For every i �= j , put

xi,j := �(i, j)λ

(
i + j

2

)
µ

(
i + j

2
, j

)
.

Define the rays �v
ρ, ρ ∈ L({v}), v ∈ V := (Z/(N − 1))� {∗}, according to (3), (4), using (9),

(10). Define the rays Fπ, π ∈ L(V ), according to (5), using (6), (13), (14), (15). Claim that
the finite configuration in (C2)⊗(N−1) formed by these rays is non-bicolourable.

8. Discussion

In the present paper a new infinite family of examples of non-bicolourable configurations
of rays has been described. More precisely, it is better to view it as a family of families
of examples: there is a parameter N = 4n, n ∈ N, indexing the families, and for each N
there are several complex-valued parameters (their number depends on N), which index the
configurations. If one puts N = 4 and all xi,j = 1, then one recovers just the configuration of
rays described in [15, 16], but in a completely different notation.

Observe that the projective lines �∗
ρ, ρ ∈ L({∗}), do not depend on xi,j . The relation �⊥

depends on xi,j , but at the same time it does not change if one varies the continuous part of
xi,j , i.e. the function λ. Hence, for a given N, the corresponding configurations we have can be
viewed as deformations of each other in the sense of the definition given above. It is natural to
mark the configuration corresponding to all λ(k) = 1, and view the others as its deformations.

We have a notion of deformation which connects two configurations. Its definition implies
that either both configurations are bicolourable, or both are non-bicolourable. It is possible to
extend this definition so that to capture the transition bicolourable −→ non-bicolourable, and
vice versa, but this stays beyond the framework of the present paper. It is, of course, necessary
to replace the requirement that the bijection in the definition of deformation respects the �⊥
relation by something else. Intuitively, this should be a requirement that the bijection respects
the ‘template’ of the relation, but not the relation itself. For example, in the definition of the
relation R there are four parameters p0, p1, p2, p3. Varying the values of the parameters, one
obtains different R, but of a similar form. In order to formulate a consistent generalization, it
appears natural to consider saturated configurations, i.e. such ones, for which any subset of
pairwise orthogonal rays can be embedded in a subset of d pairwise orthogonal rays, d—the
dimension of space H. So it is necessary to construct a saturation for the new examples first.

The other direction of possible generalizations is to increase the number of colours. Note
that it is related to the interpretation of the Kochen–Specker theorem in terms of generalized
valuations in [20–23]. A reasonable definition of non-colourable configuration for several
colours will, apparently, require an introduction of some filtration on P(H) × P(H), which is
meant to replace the �⊥ relation. This filtration might depend on a particular physical problem.
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The set of colours, present in the definition, would also require some additional structure,
similar to that of an orthoalgebra.

Intuitively, a saturated configuration has to possess some symmetry. For the configuration
corresponding to N = 4 and all xi,j = 1, a finite saturation has been constructed in [24],
motivated by [25]. Its symmetry turns out to be described by a non-trivial Abelian extension
G of (Z/2)6 over GL(4, F2) (the general linear group of 4 × 4 matrices over a field with two
elements). The number 6 stems from some combinatorics and should be viewed as a binomial
coefficient C2

4 . Hence, one looks at a short exact sequence in the category of groups

0 → (Z/2)6 → G → GL(4, F2) → 0. (23)

The point of view described in that paper appears to be quite general. It might be possible
to construct new finite saturated non-bicolourable configurations by way of considering in
analogy with (23) the extensions 0 → A → G̃ → G → 0, for G and A being some other
finite groups, and A, say, elementary Abelian. The condition of non-bicolourability then yields
simply a condition on the corresponding cohomology class α ∈ H 2(G,A).
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